Radar Systems for Glaciology

نویسندگان

  • Achille Zirizzotti
  • Stefano Urbini
  • Lili Cafarella
چکیده

This chapter deals with radar systems, measurements and instrumentation employed to study the internal core and bedrock of ice sheets in glaciology . The Earth's ice sheets are in Greenland and Antarctica. They cover about 10% of the land surface of the planet. The total accumulated ice comprises 90% of the global fresh water reserve. These ice sheets, associated with the ocean environment, provide a major heat sink which significantly modulates climate. Glaciology studies aim to understand the various process involved in the flow (dynamics), thermodynamics, and long-term behaviour of ice sheets. Studies of large ice masses are conducted in adverse environmental conditions (extreme cold, long periods of darkness). The development of remote sensing techniques have played an important role in obtaining useful results. The most widely used techniques are radar systems, employed since the 1950s in response to a need to provide a rapid and accurate method of measuring ice thickness. Year by year, polar research has become increasingly important because of global warming. Moreover, the discovery of numerous subglacial lake areas (water entrapped beneath the ice sheets) has attracted scientific interest in the possible existence of water circulation between lakes or beneath the ice (Kapitsa et al., 2006; Wingham et al., 2006; Bell et al., 2007). Recent studies in radar signal shape and amplitude could provide evidence of water circulation below the ice (Carter 2007, Oswald & Gogineni 2008). In this chapter the radar systems employed in glaciology, radio echo sounding (RES), are briefly described with some interesting results. RES are active remote sensing systems that utilize electromagnetic waves that penetrate the ice. They are used to obtain information about the electromagnetic properties of different interfaces (for example rock-ice, ice-water, seawater-ice) that reflect the incoming signal back to the radar. RES systems are characterized by a high energy (peak power from 10 W to 10 KW) variable transmitted pulse width (about from 0.5 ns to several microseconds) in order to investigate bedrock characteristics even in the thickest zones of the ice sheets (4755 m is the deepest ice thickness measured in Antarctica using a RES system). Changing the pulse length or the transmitted signal frequencies it is possible to investigate particular ice sheet details with different resolution. Long pulses allows transmission of higher power than short pulses, penetrating the thickest parts of the ice sheets but, as a consequence, resolution decreases. For example, the GPR system, commonly used in geophysics for rock, soil, ice, fresh water, pavement and structure characterization, employs a very short transmitted pulse (0.5 ns to 10 ns) that allow detailing of the shallow parts of an ice sheet (100-200 m in depth) (Reynolds 1997).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Shuttle Radar Topography Mission Elevation Data

The Shuttle Radar Topography Mission (SRTM) was flown in February 2000 and collected the first ever high-resolution near-global digital elevation data. The final SRTM data have become widely available at 1 arc-second resolution for the United States and 3 arc-second resolution for other areas. This article reviews the background of the SRTM mission, the data quality characteristics of the SRTM ...

متن کامل

Waveform Design using Second Order Cone Programming in Radar Systems

Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...

متن کامل

A Flexible Link Radar Control Based on Type-2 Fuzzy Systems

An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...

متن کامل

The Object Detection Efficiency in Synthetic Aperture Radar Systems

The main purpose of this paper is to develop the method of characteristic functions for calculating the detection characteristics in the case of the object surrounded by rough surfaces. This method is to be implemented in synthetic aperture radar (SAR) systems using optimal resolution algorithms. By applying the specified technique, the expressions have been obtained for the false alarm and cor...

متن کامل

Advanced Ground Penetrating Radar Signal Processing Techniques

Ground penetrating radar (GPR) is a non-destructive geophysical method that uses electromagnetic waves to image the subsurface. A typical GPR system has three main components: transmitter and receiver, directly connected to the transmitting and receiving antennas, and a control unit. Electromagnetic pulses are transmitted into the subsurface and the earth response is recorded. The GPR method is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012